
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Autopilot

Collaborative Audit Prepared For: Autopilot
Lead Security Expert(s): TessKimy
Date Audited: July 9 - July 12, 2025
Final Commit: b3b3e6a

1

https://github.com/DemoreXTess
https://github.com/aeroclub-finance/autopilot-contracts/tree/b3b3e6a19d99e98777b0345868e42b30f938bd26

Introduction
This security review focused on validating the security and correctness of the
PermanentLocksPool system, particularly around voting strategies, reward distribution,
and epoch synchronization. It also reviewed the upgradeable components—Swapper and
DepositValidator—for safe integration and validation logic.

Scope
Repository: aeroclub-finance/autopilot-contracts

Audited Commit: ed4c8d8cfd888b14c07d23de6bc336f5e12a7121

Final Commit: b3b3e6a19d99e98777b0345868e42b30f938bd26

Files:

• contracts/aerodrome/IveNFT.sol

• contracts/autopilot/DepositValidatorV1.sol

• contracts/autopilot/IDepositValidator.sol

• contracts/autopilot/IPermanentLocksPoolV1.sol

• contracts/autopilot/PermanentLocksPoolV1.sol

• contracts/autopilot/RewardsVault.sol

• contracts/autopilot/SwapperV1.sol

Final Commit Hash
b3b3e6a19d99e98777b0345868e42b30f938bd26

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• High issues are directly exploitable security vulnerabilities that need to be fixed.

• Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

2

https://github.com/aeroclub-finance/autopilot-contracts/tree/b3b3e6a19d99e98777b0345868e42b30f938bd26

Issues Found

High Medium Low/Info

1 0 11

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0 0 0

3

Issue H-1: Improper Voting Power Update in claim
RebaseReward Enables Reward Manipulation
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/8

Summary
The claimRebaseReward function fails to account for pending rewards tied to an NFT's
voting power before that power is updated. This oversight allows to manipulate the
reward distribution system. By updating the NFT's voting power before claiming rewards,
the system uses outdated power values in its global reward rate calculation, leading to
imbalanced and exploitable payouts.

Vulnerability Detail
The vulnerability lies in the sequence of operations inside the claimRebaseReward
function. Specifically, it updates the voting power of NFTs before claiming any pending
rewards tied to their previous voting power. Since the reward system relies on the total
voting power to compute the global reward rate, modifying this value prematurely
introduces inconsistencies.

The formula used for reward rate calculation is:

rewardRate =
reward× scale

totalVotingPower

If totalVotingPower is altered before the associated NFT’s reward is claimed, the
numerator (reward) is distributed incorrectly.

1. Accumulating pending rewards on NFTs with lower voting power.

2. Calling claimRebaseReward, which increases voting power before claiming the
reward.

3. Exploiting the fact that the global reward rate still reflects the lower totalVotingPo
wer (from before the increase).

4. Receiving more reward than justified due to inflated individual power and outdated
global power.

Impact
The issue allows for extraction of unearned rewards. Since the total voting power used in
the reward rate denominator is outdated when rewards are calculated, an attacker can
strategically amplify their earnings. This distorts the fairness of the distribution model.

4

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/8

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L502-L509

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L898-L900

Tool Used
Manual Review

Recommendation
Claim pending rewards for given NFT in claimRebaseRewards function before updating
voting power.

Discussion
Sergey988

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982
800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol
allowbreak #L515C1-L519C8

We decided to avoid direct claims during rebase, so we just “postponed” the rewards till
actual claim. We added postponed_rewards field to LockInfo which is incrementing with
every rebase and clearing every claim.

5

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L502-L509
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L502-L509
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L502-L509
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L898-L900
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L898-L900
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L898-L900
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L515C1-L519C8
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L515C1-L519C8
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L515C1-L519C8

IssueL-1: IncorrectExecutionOrder indeposit Function
Prevents Valid Permanent Lock Upgrade
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/9

Summary
The deposit function attempts to automatically convert eligible NFTs into permanently
locked versions during deposit. However, due to incorrect execution order, the
conversion to permanent lock occurs after a deposit validation check. In cases where an
NFT has decayed in value over time, this check may fail because it validates against the
current (lower) value instead of the upgraded permanent lock value. As a result, deposits
that should succeed revert unexpectedly.

Vulnerability Detail
The function first calls deposit_validator.validateDepositOrFail(...) before
converting the NFT into a permanently locked version. However, only permanently
locked NFTs receive the full voting power restoration (typically to their highest historical
value, per Aerodrome's mechanism).

This causes a problem when:

• An NFT is decaying (not permanently locked).

• Its current voting power falls below the minimum required by deposit_validator.

• The contract intends to upgrade it to permanent lock during deposit.

• But the validation check (which occurs before the upgrade) fails due to its decayed
power.

This is a logic ordering flaw.

Impact
This flaw introduces an edge-case denial-of-deposit for users with time-decayed NFTs
that would otherwise qualify upon permanent locking.

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L300-L314

6

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/9
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L300-L314
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L300-L314
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L300-L314

Tool Used
Manual Review

Recommendation
Corrected Order

if (nft_locks_contract.voted(_lock_id)) {
voter_contract.reset(_lock_id);

}

if (!lock.isPermanent) {
nft_locks_contract.lockPermanent(_lock_id);

}

if (address(deposit_validator) != address(0)) {
deposit_validator.validateDepositOrFail(

nft_locks_contract,
_lock_id,
msg.sender

);
}

This ensures the NFT is permanently locked (and thus restored in value) before validation
occurs.

Discussion
Sergey988

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982
800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol
allowbreak #L318-L333

Fixed exactly as in your recommendation

7

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L318-L333
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L318-L333
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L318-L333

Issue L-2: voteWithNfts Function Susceptible to
UnintendedRevertsDuetoOutdatedSnapshotState
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/10

Summary
The voteWithNfts function checks whether the system is within a special window using a
last_snapshot_id variable. However, this variable can become outdated due to protocol
inactivity. When outdated, the _isInSpecialWindowOrFail(last_snapshot_id) check may
incorrectly revert, preventing otherwise valid votes from being cast. To prevent this
denial-of-service condition, the function should proactively call _emergencySnapshot()
before this check to ensure last_snapshot_id is current.

Vulnerability Detail
The last_snapshot_id is assumed to be fresh, but this assumption fails in periods of
inactivity and whenever snapshot reward call is missed in current epoch. If an autopilot
bot tries to vote during such a period, the system may falsely consider them to be
outside the ”special window”, causing a revert.

Impact
This bug creates a low-severity denial-of-service for permitted operators attempting to
vote.

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L417-L421

Tool Used
Manual Review

Recommendation
Precede the window check with an emergency snapshot update:

_emergencySnapshot(); // Refresh state
_isInSpecialWindowOrFail(last_snapshot_id);

8

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/10
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L417-L421
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L417-L421
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L417-L421

This ensures that voting is always evaluated against the most recent snapshot, avoiding
unnecessary transaction failures.

Discussion
Sergey988

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982
800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol
allowbreak #L440-L443

Fixed exactly as in your recommendation

9

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L440-L443
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L440-L443
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L440-L443

Issue L-3: claimRebaseReward can be DoSed due to
stale activePeriod in AerodromeMinter
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/11

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The claimRebaseReward function depends on Aerodrome's reward_distributor contract,
which internally checks whether the minter's activePeriod is current. If activePeriod() is
stale, the claim reverts with an UpdatePeriod() error. This creates a denial-of-service
(DoS) vector: unless an external party calls updatePeriod() on the minter contract
beforehand, claimRebaseReward will always revert.

Vulnerability Detail
The call chain from claimRebaseReward leads to Aerodrome’s reward distribution logic,
which includes this guard clause:

if (IMinter(minter).activePeriod() < ((block.timestamp / WEEK) * WEEK)) revert
UpdatePeriod();↪→

• activePeriod() returns the last reward period timestamp.

• If it is older than the current period (rounded down to the nearest WEEK), the claim
call reverts.

Because activePeriod is not automatically updated, this check prevents reward claiming
until someone explicitly calls:

IMinter(minter).updatePeriod();

Impact
It's an edge case scenario that reverts transaction until the update (DoS)

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L502

10

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/11
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L502
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L502
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L502

Tool Used
Manual Review

Recommendation
Before calling claim function check the active period and call update period function if
it's not up-to-date.

Discussion
Sergey988

Nothing critical happens if it will not work. We can call it any time during the week,
outside of special window. But we will check this from the bot side to avoid reverts and
maybe postpone tx.

11

Issue L-4: Inactive Epochs Can Lead to Incorrect
Reward Distribution Due to Missed Snapshot
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/12

Summary
An edge case occurs when a user deposits an NFT during the special window at the end
of epoch 0. This deposit is intended to be counted in epoch 1. However, if the snapshotRe
ward function is not triggered during epoch 1 (either by the autopilot bot or via an
emergency snapshot), the snapshot logic will incorrectly calculate rewards in the next
epoch, using outdated tracking data from the last recorded snapshot.

Note: Given example with epoch 0 and 1 is just an example, not specific for epoch 0
and 1

Vulnerability Detail
Reward distribution relies on the tracked weight recorded in the last snapshot:

if (total_tracked_weight[last_snapshot_id] > 0) {
uint256 reward_scaled = (reward_amount * SCALE) /
total_tracked_weight[last_snapshot_id];↪→

acc_reward_scaled += reward_scaled;
}

• last_snapshot_id is not updated if no snapshot is taken during epoch 1.

• Therefore, any user deposits made for epoch 1 (special window of epoch 0) are not
included in the tracked weight used to calculate the reward coefficient (reward_sca
led) in the next epoch.

• As a result, the computed reward_scaled value is inflated, since it's based on a
smaller total_tracked_weight, and rewards are distributed disproportionately.

Note: There is also another problem that if tracked_weight is equal to 0, it still sends
the funds to reward vault which will lock it inside to contract. Fix will be given in rec-
ommendation

Impact
Users who should be eligible for rewards (e.g., those who deposited during the transition
window) are not properly accounted and it will cause inflated reward calculation.

12

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/12

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L589-L595

Tool Used
Manual Review

Recommendation
Following code solves the problem:

if(current_epoch > last_snapshot_id + 1) {
if(total_tracked_weight[last_snapshot_id] + total_tracked_weight[last_snapshot_id

+ 1] > 0) {↪→

uint256 reward_scaled = (reward_amount * SCALE) /
(total_tracked_weight[last_snapshot_id] + total_tracked_weight[last_snapshot_id
+ 1]);

↪→

↪→

acc_reward_scaled += reward_scaled;
SafeERC20.forceApprove(rewards_token, address(rewards_vault), reward_amount);
rewards_vault.deposit(rewards_token, reward_amount);

}
} else {
if(total_tracked_weight[last_snapshot_id] > 0) {

uint256 reward_scaled = (reward_amount * SCALE) /
total_tracked_weight[last_snapshot_id];↪→

acc_reward_scaled += reward_scaled;
SafeERC20.forceApprove(rewards_token, address(rewards_vault), reward_amount);
rewards_vault.deposit(rewards_token, reward_amount);

}
}

Discussion
Sergey988

Fixed by refactoring acc_reward_scaled. Now we are snapshoting acc_reward_scaled
state for each epoch. We added acc_reward_scaled_per_epoch global variable which is a
mapping.

13

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L589-L595
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L589-L595
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L589-L595

Issue L-5: SpecialWindowDurationDoesn’tWork as
Documented Behavior
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/13

Summary
The protocol documentation states that the ”special window” for deposits lasts a fixed
duration (e.g., Xminutes). However, in practice, this window ends immediately when the
bot publishes a reward snapshot regardless of the actual elapsed time. This introduces a
mismatch between implementation and documentation, which could confuse
integrators or users relying on a predictable timing model.

Vulnerability Detail
The function that publishes reward snapshots also implicitly closes the special window
because last snapshot id will be increased after execution and special window will be
shifted to next one. Thus, the window's actual lifespan is tied to when the bot executes s
napshotReward, not the constant duration described in the documentation.

Impact
Expected behavior based on documentation does not match contract logic

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L606

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L347

Tool Used
Manual Review

Recommendation
Track block.timestamp instead of last snapshot id for special windows

14

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/13
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L606
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L606
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L606
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L347
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L347
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L347

Discussion
Sergey988

Fixed documentation in this commit

15

https://github.com/aeroclub-finance/autopilot-contracts/commit/b3b3e6a19d99e98777b0345868e42b30f938bd26

Issue L-6: Emergency Withdraw Functions Bypass
SpecialWindowRestriction if Snapshot IsOutdated
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/14

Summary
The functions emergencyWithdrawFromRewardsVault and emergencyWithdrawFromLocksVaul
t include a check to prevent execution during the special window:

_isNotInSpecialWindowOrFail(last_snapshot_id);

However, if snapshotReward has not been called in the current epoch, last_snapshot_id
remains outdated. As a result, the special window check passes incorrectly, allowing
emergency withdrawals during an active special window.

Impact
Requires onlyOwner access and does not present a direct risk to user funds, but violates
design constraints.

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L721-L725

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L736-L741

Tool Used
Manual Review

Recommendation
Call _emergencySnapshot before checking special window

Discussion
Sergey988

16

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/14
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L721-L725
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L721-L725
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L721-L725
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L736-L741
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L736-L741
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L736-L741

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982
800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol
allowbreak #L765-L792

Fixed exactly as in your recommendation

17

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L765-L792
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L765-L792
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L765-L792

Issue L-7: Automation-Facing Functions Lack Fault
Tolerance, Causing Preventable DoS
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/15

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
Several core functions designed for off-chain automation such as batchSwapMultiHop, cla
imRebaseRewards perform batch operations using for loops without error isolation. If a
single item in the batch fails (e.g., an NFT has been withdrawn or a swap fails), the entire
transaction reverts, halting all other unrelated operations. This undermines the
protocol’s gas efficiency and reliability, both of which are critical to the economic model
of Autopilot.

Vulnerability Detail
Each of the functions below contains a for loop that processes a list of user assets or
instructions. However, the loop lacks resilience against individual errors:

batchSwapMultiHop

• Executes swaps in a loop.

• If a single swap fails, the entire function reverts.

• Recommendation: Use try-catch around each individual swap to allow the rest to
proceed.

Note: Swap can fail due to slippage check with high likelihood because there can be
many swap command

claimRebaseRewards

• Iterates over NFT token IDs.

• If any NFT has been withdrawn and ownership check fails, the function reverts.

• Recommendation: Add ownership check and skip failed NFTs using continue.

Impact
• Automation bot executions may fail unpredictably.

• Wasted gas on failed transactions.

18

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/15

• Blocks protocol scalability in automated environments.

Tool Used
Manual Review

Discussion
Sergey988

We are handling this from the bot (offchain) side by simulating voting just before actual
voting

Also when swapping tokens (the most possibly bugged stage) we are simulating which
tokens are exactly causing the revert and removing it from the batch. After simulation
done we receive a working txs and we know exactly which tokens were not swapped so
we will try to swap it on next epoch.

Skipping this issue

19

IssueL-8: Potential PrecisionLossWhenSnapshotting
Low Reward Amounts
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/16

Summary
The reward distribution logic may experience precision loss when a very small reward
amount is snapshotted into a pool with high total value locked (TVL). Since rewards are in
USDC (6 decimals) and the share values are scaled to 18 decimals, the computed
per-share reward (reward_scaled) may truncate to zero, resulting in no effective reward
distribution.

Vulnerability Detail
Reward calculation is performed using the formula:

uint256 reward_scaled = (reward_amount * SCALE) /
total_tracked_weight[last_snapshot_id];↪→

Where:

• SCALE = 1e18

• reward_amount is in 6-decimal USDC

• total_tracked_weight (TVL) is based on 18-decimal AERO

Example Scenario:

• total_tracked_weight = 1e24 (� 1,000,000 AERO)

• reward_amount = 9e5 (0.9 USDC)

• Resulting reward_scaled = 9e5 * 1e18 / 1e24 = 0 (rounded)

If reward_amount is too small relative to TVL, reward_scaledmay round down to 0 due to
integer division. This causes no rewards to be distributed despite a snapshot being taken.

Note: This is very low likelihood situation because less than $1 reward for 1M AERO TVL
is not a realistic scenario. If off-chain bots correctly takes the rewards and publish
them as snapshot to pool, it's impossible to be equal to 0. (Maybe if AERO price goes
down to 0.001, this scenario can be possible)

Impact
Deposited amount will be locked in reward vault contract

20

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/16

Tool Used
Manual Review

Recommendation
Increase SCALE value to 1e30 in order to calculate it in 1e18 precision

Discussion
Sergey988

This will require too many changes from offchain and onchain part, unfortunately will be
fixed only in the next Version 2 Contract.

Skipping this issue

lpetroulakis

Fixed in a previous commit.

21

IssueL-9:UnnecessaryStateWriteWhen lock_payout
== 0
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/17

Summary
In the reward claim logic, the contract updates the lock_info.reward_scaled_start
baseline even when the computed lock_payout is zero. Since no reward is being
distributed in this case, this write operation is redundant.

Vulnerability Detail
The following code updates the user’s reward baseline unconditionally when delta_acc >
0, even if no payout occurs:

if (delta_acc > 0) {
uint256 lock_payout = (lock_weight * delta_acc) / SCALE;

// Unconditional update
lock_info.reward_scaled_start = acc_reward_scaled;

if (lock_payout > 0) {
rewards_vault.withdraw(rewards_token, msg.sender, lock_payout);
emit Claim(msg.sender, lock_payout);

}
}

In scenarios where lock_payout == 0, updating reward_scaled_start has no practical
effect. This is very low likelihood situation. It happens only when user has really low
amount of voting power. We can also count it as user mistake.

Impact
Impact is very low because it can only happen when voting power of user is very low.

Tool Used
Manual Review

Recommendation
Move the baseline update inside the conditional block:

22

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/17

if (delta_acc > 0) {
uint256 lock_payout = (lock_weight * delta_acc) / SCALE;

if (lock_payout > 0) {
lock_info.reward_scaled_start = acc_reward_scaled;
rewards_vault.withdraw(rewards_token, msg.sender, lock_payout);
emit Claim(msg.sender, lock_payout);

}
}

This ensures state is only mutated when necessary.

Discussion
Sergey988

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982
800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol
allowbreak #L936C31-L948

Fixed in latest version

23

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L936C31-L948
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L936C31-L948
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L936C31-L948

Issue L-10: Missed Snapshot Prevents Reward Claim
for Users WhoWithdraw Before Recovery
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/18

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
In the Autopilot system, if the automation bot fails to call snapshotReward during the
special window, the fallback mechanism emergencySnapshot is used to populate the
snapshot for the missed epoch. This ensures that the system can continue operating into
the next epoch. However, this mechanism fails to account for users who withdraw their
locks before the next snapshotReward call causing them to permanently lose access to
their entitled rewards.

Vulnerability Detail
When snapshotReward is missed:

• emergencySnapshot copies the previous epoch's tracked state into the current
snapshot ID.

If a user:

1. Deposits a lock in epoch N

2. The bot misses the snapshot at the start of epoch N+1

3. The user withdraws the lock and he claimed 0 reward from the system

4. In the next epoch, reward is distributed for all previous users

5. Our user couldn't take any reward but he locked his lock at least 1 epoch.

Impact
Maybe we can count it as user mistake but we can't deny that user couldn't get any
reward for his 1 week lock period.

Tool Used
Manual Review

Recommendation
Fix is not trivial, fix should be discussed because it needs many change in the codebase.

24

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/18

Discussion
Sergey988

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982
800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol
allowbreak #L83-L85

Fixed by refactoring acc_reward_scaled. Now we are snapshoting acc_reward_scaled
state for each epoch. We added acc_reward_scaled_per_epoch global variable which is a
mapping.

25

https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L83-L85
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L83-L85
https://github.com/aeroclub-finance/autopilot-contracts/blob/d81d2c282e6e0f5d982800d070d120e97f284874/contracts/autopilot/PermanentLocksPoolV1.sol\##L83-L85

Issue L-11: emergencySnapshot Can Be Exploited to
DoS snapshotReward in Edge Case Epochs
Source: https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/19

Summary
The emergencySnapshot function is designed to recover from missed snapshotReward calls
by backfilling snapshot data using the last known state. However, in edge-case
scenarios involving prolonged inactivity, a malicious actor can abuse emergencySnapshot
to deliberately block the next legitimate snapshotReward call. This leads to a
denial-of-service condition in the automated snapshot flow.

Vulnerability Detail
The emergencySnapshot function checks whether the system is currently in the special
window of the last snapshot ID, and skips execution if so. But when last_snapshot_id is
stale due to inactivity, this logic becomes exploitable:

Scenario:

1. Epoch N ends with valid deposits.

2. Epoch N+1 passes without activity:

• Bot fails to call snapshotReward.

• No emergencySnapshot is triggered during this epoch.

3. Now in Epoch N+2, and special window of Epoch N is active (because last_snapshot
_id = N).

4. Malicious actor calls emergencySnapshot, which:

• Incorrectly assumes it's safe to update.

• Proceeds to increment last_snapshot_id and creates a copy snapshot.

5. When the automation bot attempts to call snapshotReward, it reverts:

• Because snapshot ID has already been updated.

• Special window conditions are no longer met.

Impact
• Denial of Service (DoS): Automation bot cannot complete snapshotReward for the
current epoch.

26

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/issues/19

Code Snippet
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c9
82b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocks
PoolV1.sol#L622-L625

Tool Used
Manual Review

Recommendation
Introduce a stricter validation in emergencySnapshot to ensure track the actual epoch (via
timestamp) and prevent emergencySnapshot from overwriting the expected reward slot

Or

Ensure every epoch at least 1 time _emergencySnapshot is called

Discussion
Sergey988

I think this is not an issue. He cannot exploit this. So if he do emergency in N+2, new
window will be in N+3, during window of N+3 he cannot call emergency, so our bots can
work normally. He will need to wait till window ends.

This situation itself is not affecting user funds, anyway the bot is not working.

lpetroulakis

isInSpecialWindowOrFail() function is added to snapshotRewards. Given scenario won't
be followed by automation bot.

27

https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L622-L625
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L622-L625
https://github.com/sherlock-audit/2025-07-autopilot-july-9th/blob/9dfa83824a97f6c982b1d089eeea2fe66f3704f3/autopilot-contracts/contracts/autopilot/PermanentLocksPoolV1.sol#L622-L625

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

28

	Introduction
	Scope
	Final Commit Hash
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue H-1: Improper Voting Power Update in claimRebaseReward Enables Reward Manipulation
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-1: Incorrect Execution Order in deposit Function Prevents Valid Permanent Lock Upgrade
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-2: voteWithNfts Function Susceptible to Unintended Reverts Due to Outdated Snapshot State
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-3: claimRebaseReward can be DoSed due to stale activePeriod in Aerodrome Minter
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-4: Inactive Epochs Can Lead to Incorrect Reward Distribution Due to Missed Snapshot
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-5: Special Window Duration Doesn't Work as Documented Behavior
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-6: Emergency Withdraw Functions Bypass Special Window Restriction if Snapshot Is Outdated
	Summary
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-7: Automation-Facing Functions Lack Fault Tolerance, Causing Preventable DoS
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Discussion

	Issue L-8: Potential Precision Loss When Snapshotting Low Reward Amounts
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue L-9: Unnecessary State Write When lock_payout == 0
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue L-10: Missed Snapshot Prevents Reward Claim for Users Who Withdraw Before Recovery
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue L-11: emergencySnapshot Can Be Exploited to DoS snapshotReward in Edge Case Epochs
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Disclaimers

